
Declarative Ontology Alignment Format for
Semantic Translation

Paweł Szmeja∗, Maria Ganzha∗‡, Marcin Paprzycki∗§, Wiesław Pawłowski†∗, Katarzyna Wasielewska∗
∗ Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

† Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, Gdańsk, Poland
‡ Warsaw University of Technology, Warsaw, Poland
§ Warsaw Management Academy, Warsaw, Poland

Abstract—With the rise of Linked Data, triplestores, natural
language processing and other semantic technologies, popularity
and applicability of ontologies grows as well. One of more
common operations on ontologies, regardless of their application,
is an alignment – a matching between entities from different
ontologies. So far, many alignment formats and languages have
been proposed, some of them for general use and some particular
to a concrete implementation of an alignment software. In this
paper we present an ontology alignment format developed within
the INTER-IoT project, and compatible with the Alignment API.
Named after our semantic translation software – Inter Platform
Semantic Mediator (IPSM) – the IPSM Alignment Format is
universal and can be used to express both simple andf complex
alignments. It is applied in practice, and used in semantic
translations within INTER-IoT.

I. INTRODUCTION

Development of semantic technologies can be viewed from
the perspective of the “Garner Hype Cycle”1. Clearly, the time
of “Peak of Inflated Expectations” followed publication of an
influential book by D. Fensel [1]. At that time a number of
volunteer-bases efforts attempted at finding ways of applying
ontologies in practice; e.g. project ChefMoz which tried to
build a “semantic restaurant repository”2. This was also the
time EC funded a number of research projects in this area;
see, for instance information concerning the Knowledge Web
project3. However, when one looks at it from birds-eye view,
expected progress has not been achieved. This resulted in
“Trough of Disillusionment”, when researchers have moved
to other, funded, research areas. It is only recently when
the interest in the topic re-emerged, giving hope that the
“Slope of Enlightenment” is near. Here, the sings are, among
others: rise of Linked Data, development of software to use
triplestores, or advances on natural language processing – with
use of semantic technologies. Nevertheless, these are just early
beginnings of change. This can be seen, for instance, when one
considers the state-of-the-art in tools for ontology alignments.
In this context, in [2], we have shown that only about 10%
of developed tools (described in literature and tried in the
OEAI competition) are still “alive”. Furthermore, in [3] we

1http://www.gartner.com/technology/research/methodologies/hype-cycle.j
sp

2https://en.wikipedia.org/wiki/ChefMoz
3http://cordis.europa.eu/ist/kct/knowledgeweb_synopsis.htm

have illustrated – on a very simple, and rather straightforward,
example – that their capabilities are somewhat limited.

Nevertheless, believing that the raise of semantic technolo-
gies is near and that they have an enormous practical potential,
in the INTER-IoT project [4] we have decided to apply them
to facilitate interoperability between IoT artifacts. Here the
assumption is that each IoT artifact offers an ontology, and
that it is possible to translate messages generated by such
artifact into RDF triples representing their content in terms
of the ontology (syntactic translation). Similarly, it should be
relatively easy to translate incoming messages represented in
terms of the ontology into the native format of a given artifact.
In other words, it should be clear that translating messages
from the native format to the ontology formally representing
it (and back) can be achieved without serious complications.
Obviously, it has to be assumed that ontologies of individual
artifacts can (and are likely to) differ. Therefore, ontology alig-
ning is needed to establish communication between artifacts.

There are multiple ways to find alignments between ontolo-
gies. It can be done using one of existing tools. However,
as mentioned, they have not reached maturity. It is also
possible to use the “paper and pencil” method and match
ontologies “manually”. In this context, we would like to ask:
how to represent alignment(s) between ontologies. So far,
many alignment formats and languages have been proposed,
some of them for general use and some particular to a concrete
implementation of an alignment software (see, Section II).
Nevertheless, in this paper, we present our own ontology
alignment format developed within the scope of the INTER-
IoT project. This format is compatible with the Alignment
API [5] and inspired by the EDOAL [6]. Named after our
semantic translation software – Inter Platform Semantic Me-
diator (IPSM) – the IPSM Alignment Format is universal and
can be used to store both complex and simple alignments.
It is applied in practice and used in the process of semantic
translation within INTER-IoT.

In what follows, we start (in Section II) with discussion of
the state-of-the-art. This discussion provides arguments. why
we have decided to develop our own approach to representing
alignments. Next, in Section III, with the description of
our approach. Further, technical details concerning the IPSM
Alignment Format are summarized in Section IV.

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
https://en.wikipedia.org/wiki/ChefMoz
http://cordis.europa.eu/ist/kct/knowledgeweb_synopsis.htm

II. ALIGNMENT FORMATS

The need for use of alignments arose during work on me-
chanisms of semantic translation of messages in INTER-IoT
project. Therefore, we required a format that would be practi-
cal, extendable and capable of storing complicated expressions
and transformations. There are few existing alignment formats,
proposed in recent years. First and, probably, most popular
is the Alignment API Format [5]. It is a standard RDF/XML
format for storing alignments. It was popularized by the OAEI4

competition, where it serves as the common output format,
so that the results of different software tools can be directly
compared. The schema of the format allows different “levels”
of complexity. The simplest – level 0 (the default for the
Alignment API) allows to express correspondences between
simple entities, i.e. ones described only by an URI. At the
same time there are no (known to us) tools that can support
higher levels of the Alignment API. Therefore, since we had to
represent alignments more complex than these that the level 0
Alignment API can capture, we have started looking for other
options.

EDOAL [7], by the same authors as the Alignment API,
is a declarative language (compatible with the schema of
the Alignment API format) capable of expressing complex
alignments. It defines its own OWL-like language to describe
entities and transformations between them. Although, at the
time of writing, there is no tool that can generate complex
alignments (i.e. as complex as EDOAL allows) automatically,
there were attempts at designing semi-automatic systems [8],
[9]. There, the automatically recognized equivalence or sub-
sumption matches between simple entities were expected to be
manually refined, in an iterative process, in order to capture/re-
present existing complexity. While expressive, EDOAL has its
own limitations, some even recognized by the authors [7]. In
particular, it does not support RDF patterns in entities, instead
opting for a custom RDF-like set of XML tags. Furthermore,
its practical application requires learning a new way to write
class and property expressions, relations, values, and others.
Moreover, the EDOAL transformations are complicated and, in
our opinion, not explained well enough in the documentation.

Some alignment tools, like COMA++5 or AgreementMa-
ker6, alongside the capability of generating Alignment API
format-compatible files, define their own alignment formats.
Those are, however, completely application-specific and are
not used outside of their respective software.

RDF itself, can be annotated using vocabularies, such as
SKOS7, in order to store the alignment information in the
same file, as the ontology. However, this approach has been
criticized for mixing ontology with extraneous data, and being
too constrained [10] by the semantics of the underlying
ontology language (i.e. OWL). Hence it also did not provide
a viable alternative.

4http://oaei.ontologymatching.org/
5https://dbs.uni-leipzig.de/de/Research/coma.html
6https://github.com/AgreementMakerLight/AML-Jar
7https://www.w3.org/TR/2009/REC-skos-reference-20090818/

There are also other conceptual models of representing
alignments, such as [10]. Although they offer clear theoretical
advantages and have useful mathematical properties, they lack
implementations. Hence, they had no practical value for the
needs of the INTER-IoT project.

Taking into consideration our findings, we have decided to
create our own format, as opposed to implement an existing
specifications (with constraints put upon the format by its
original authors). Let us now describe it in some detail.

III. IPSM ALIGNMENT FORMAT

The general structure of the Inter Platform Semantic Medi-
ator Alignment Format (IPSM-AF) is based on the Alignment
API format [5], and is fully compatible with its specification.
IPSM-AF was also inspired by the EDOAL [7], but has key
differences and additions, both in syntax and semantics. The
format is serialized in RDF/XML, although it can be stored
in any RDF serialization. Here, note that the XML is required
for compatibility with the Alignment API.

Conceptually, an IPSM-AF file describes a set of uni-
directional mappings (alignments) between cells. Each cell
is an independent structure describing an RDF graph. The
alignment represents not just a simple correspondence, but
also a way of transforming the “source” RDF into the “tar-
get” RDF code. Unidirectionality of mappings means that
the correspondence holds between the source and the target
cells, but not necessarily in the opposite direction. This is
significant, because, in this way, it is possible to capture
complicated alignments, which use transformations that may
not be reversible.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’
no’?>

<rdf:RDF xmlns="http://www.inter-iot.eu/sripas#"
{other xml namespaces} >

<align:Alignment>
<dcelem:title>{title}</dcelem:title>
<exmo:version>{version}</exmo:version>
<dcelem:creator>{creator}</dcelem:creator>
<dcelem:description>{description}</

dcelem:description>

<align:xml>yes</align:xml>
<align:level>2IPSM</align:level>
<align:type>**</align:type>
<align:method>{method}</align:method>
<align:time>{time}</align:time>

<align:onto1>
<align:Ontology rdf:about="[source ontology

uri]">
<align:location>
{source ontology location}

</align:location>
<align:formalism>
<align:Formalism

align:name="[src ontology formalism name
]"

align:uri="[src ontology formalism URI]"
/>

</align:formalism>
</align:Ontology>

</align:onto1>
<align:onto2>

{target ontology information}

http://oaei.ontologymatching.org/
https://dbs.uni-leipzig.de/de/Research/coma.html
https://github.com/AgreementMakerLight/AML-Jar
https://www.w3.org/TR/2009/REC-skos-reference-20090818/

</align:onto2>

<sripas:steps rdf:parseType="Literal">
<sripas:step
sripas:order="[cell order]"
sripas:cell="[cell id]"

/>
{more steps}

</sripas:steps>

<align:map>
{alignment cell}

</align:map>
{more mappings}

</align:Alignment>
</rdf:RDF>

Listing 1. IPSM-AF — general structure

The overview of the structure of the IPSM-AF is pre-
sented in Listing 1. An alignment file is, conceptually, di-
vided into a set of header properties and a set of map-
pings that contain information most important for the alig-
nment. The header is a simple collection of properties
and follows, mostly, the Alignment API. It contains meta-
data about the alignment. Here one can find property as-
sertions, such as <dcelem:title>, <exmo:version>,
<dcelem:creator> and <dcelem:description> that
describe the contents of an alignment file as simple text
(i.e. in strings). Values of those properties are also used in
the INTER-IoT semantic repository (storage) software and
the Alignment Server8. Because of inherent extendability
of RDF, other properties, such as <rdfs:comment> or
<dcterms:issued>, may be added.

Properties, inherited from the Alignment API, are as fol-
lows. <align:xml> states that the alignment file is forma-
lized as RDF/XML and, for the IPSM Alignment Format,
it should always be set to “yes”. <align:level> is the
Alignment API indicator of complexity level of the alignment,
set to “2IPSM”, for our format This name follows the example
set in the Alignment API documentation, where “0” means
simple entity alignments, “1” simple entity groups, and “2”
complex entities (e.g. “2EDOAL” is the identifier for EDOAL).
<align:type> describes the arity (e.g. 1-to-1, 1-to-many),
which is “**” for our format (denoting many-to-many). The
two properties: <align:method> and <align:time>,
describe the method used to create the alignment, and the
time when it happen, respectively. Reader should refer to the
Alignment API documentation9 for more in-depth explanation
of these properties.

The header contains also information about source and
target ontologies, as properties <align:onto1> and
<align:onto2>, respectively – both inherited from the
Alignment API. Technically, this declaration does not con-
strain the content of the alignment cells in any way. In theory,
one could put, in the alignment file, mappings that do not use
either ontology. Conceptually, however, the aligned ontologies
should correspond with the “source” and “target” cells. It is up

8http://alignapi.gforge.inria.fr/server.html
9http://alignapi.gforge.inria.fr/format.html

to the alignment creator to decide if the alignment will uphold
this rule.

The last header property – <sripas:steps> – describes
an “order of application” of alignment cells, which should
be interpreted in the context of alignment-based semantic
translation, and is used by the IPSM. We will get back to
this in further sections. What is significant about this property
is the use of the rdf:parseType attribute with the value
"Literal", which denotes that the object of the property is
an XML literal. It increases the readability of the IPSM-AF
file, and is a simple way of avoiding the “multiple children
problem” that would arise, if a set of RDF property assertions
and objects was used instead.

The rdf:parseType="Literal" declaration is also
used in other properties, described later. Values of such
properties still need to be in well-formed XML, following
a separate schema, defined for XML and not RDF. For
<sripas:steps>, the schema constraints the value of the
property to a list of <sripas:step> tags with integer
attribute order and string attribute cell.

Finally, objects of the <align:map> property are the
actual alignment cells. Alignment can have any num-
ber of <align:map> property assertions, each with an
<align:Cell> object as the value. Note that a useful
alignment would have at least one cell. The structure of an
alignment cell is presented in Listing 2.

<align:Cell rdf:about="[cell id]">
<align:entity1 rdf:parseType="Literal">

{source RDF pattern}
</align:entity1>
<align:entity2 rdf:parseType="Literal">

{target RDF pattern}
</align:entity2>
<align:relation>{relation}</align:relation>
<align:measure rdf:datatype="&xsd;float">
{confidence measure}

</align:measure>
<sripas:filters rdf:parseType="Literal">

<sripas:filter sripas:about="&sripas;node_sx"
sripas:datatype="&xsd;string"/>

{more filters}
</sripas:filters>
<sripas:typings rdf:parseType="Literal">
<sripas:typing sripas:about="&sripas;node_y"

sripas:datatype="&xsd;float"/>
{more typings}

</sripas:typings>
<sripas:transformation rdf:parseType="Literal">
{functional constraints}

</sripas:transformation>
</align:Cell>

Listing 2. IPSM-AF – alignment cell structure

In the listing, the two most important properties are
<entity1> and <entity2> that describe source and target
entities, respectively. They contain the RDF/XML code, with
an RDF pattern, which is any valid RDF code, optionally
with additional sripas tags (explained below). Here, the
rdf:parseType="Literal" declaration is used, so that
the property values are treated as literals. As a consequence
the RDF graphs, inside the literals, are separated from the
RDF graph of the whole alignment. In other words, the source

http://alignapi.gforge.inria.fr/format.html

and the target entity RDF patterns are kept encapsulated and
separate.

<align:entity1 rdf:parseType="Literal">
<sripas:node_X>

<rdf:type rdf:resource="&dc;Agent"/>
</sripas:node_X>

</align:entity1>

Listing 3. IPSM-AF – example of source RDF pattern

Listing 3 presents a simple RDF pattern, with a single
<sripas:node_X> variable. The sripas is a reserved
namespace that has a special meaning in the RDF pattern.
It denotes an element that is interpreted as a “placeholder”, or
a variable, and its name is the URI fragment (e.g. node_X
in the example in Listing 3). Variable names do not need
to be defined before their use and there can be any number
of them, used anywhere in the pattern. Multiple patterns
may use the same variables. Within an alignment cell, there
are no limitations put on variables in <entity1>. Varia-
bles in <entity2>, however, must be declared earlier in
<entity1>, or in <transformation> (described later).
In other words, one cannot use a variable in <entity2> that
did not appear earlier in the same alignment cell.

Observe that meaning of sripas variables is very similar
to SPARQL variables – they are placeholders for any object
or value. In Listing 3, for example, the node_X variable
denotes any valid RDF node that is the subject of a “?node_X
rdf:type dc:Agent” triple. In this example, the variable
represents an object, but the same mechanism can be used to
represent literal values (just like in SPARQL). At times, this
may be in opposition to semantics of a particular ontology,
because a sripas variable is, technically, a node for a named
entity in the sripas namespace. Putting it in the place of the
object of a triple, where the predicate is an OWL data property,
violates the semantics of some OWL profiles (e.g. OWL 2.0
DL). The semantics of our format, however, allows such RDF
pattern. Otherwise the value type and object type variables
would need to have different syntax, which we wanted to
avoid.

In order to accommodate added semantics, while preserving
RDF compatibility, the datatype of variables cannot be re-
stricted from within RDF patterns. Instead, each cell can have
optional <sripas:filters> and <sripas:typings>
properties. The <sripas:filters> restrict datatypes of
variables from the “source”, i.e. <entity1>. The value of the
property is a literal, with a collection of <filter> tags, each
with sripas:about and sripas:datatype attributes.
Those tags are interpreted as restricting variables, so that they
must be of a given RDF datatype, in order to match the
source entity. The <sripas:typings> property states (i.e.
declares) the RDF datatypes of variables in the target entity.
The value of the property is a set of <sripas:typing>
tags with the same attributes, as the <sripas:filter>. At
this point typings and filters pertain only to variable datatypes.

<align:entity2 rdf:parseType="Literal">
<sripas:node_X>

<rdf:type rdf:resource="≻Person"/>

</sripas:node_X>
</align:entity2>

Listing 4. IPSM-AF – example of target RDF pattern

Listing 4 contains a simple example of a target entity
RDF pattern that could be paired with the source from
Listing 3. Here, <entity2> makes use of the node_X
variable declared in source. Provided the cell does not use any
other information (i.e. typings, filters or transformations) the
meaning of this alignment is as follows – the type dc:Agent
of any entity is aligned with type sc:Person. The variable
is the reference point that lets us state: any entity of type
dc:Agent in source semantics is of type sc:Person in
target semantics.

The <align:relation>> property denotes the type of
correspondence between <entity1> and <entity2>, e.g.
subsumption (<), supersumption (>) and equivalence (=). Even
though “=” is symmetric, IPSM alignments should always be
treated as uni-directional, because of additional transformati-
ons that may have no reverse transformation defined (more,
in what follows). If a cell does not have any transformations,
typings and filters, then it can be trivially reversed by swapping
contents of source and target entities.

The <align:measure> property denotes confidence le-
vel between 0 and 1. It is, usually, produced by software that
made the alignment. The larger the value, the more sure we
are that the correspondence between entities holds true.

Finally the <sripas:transformation> property (in
Listing 5) contains any number of transformations that need
to be performed in order to convert <entity1> RDF pattern
into <entity2> pattern.

<sripas:transformation>
<sripas:function sripas:about="[function name]">

<sripas:param sripas:order="[parameter number]
" sripas:about="[sripas variable name]"/>

<sripas:param sripas:order="[parameter number]
" sripas:val="[parameter value]"/>

{more params}
<sripas:return sripas:about="[sripas variable

name]"/>
</sripas:function>
{more functions}

</sripas:transformation>

Listing 5. IPSM-AF – functional constraints

Currently, the only allowed transformations are functions,
described in <function> tags. Each function has a name
(in sripas:about attribute), a number of (ordered) para-
meters (<sripas:param> tag) and a single return value
(<sripas:return> tag). While any functions always re-
turns the result into a sripas variable, the parameters can
be either a “hardcoded” value, or a value stored in a sripas
variable. Because functions can declare new variables (as
“returns”), they can be concatenated together, i.e. return vari-
ables of any function can be used as input(s) in others. The
sripas:order stores an 1-based index of a parameter (in
case a function accepts more than one), and sripas:about
and sripas:val contain a reference to a variable, or a value
respectively. Function names, their parameter requirements

and return values correspond directly to functions available
in SPARQL. We revisit this in section IV.

Function, in Listing 6, is equivalent to the SPARQL BIND
STR(?node_Y) as ?node_FY. The alignment cell states:
any entity with sc:name property assertion (with node_Y
value) is mapped to an entity with co:prop property as-
sertion, whose value is the result of STR function run on
node_Y.

<align:Cell rdf:about="&sripas;cell1">
<align:entity1 rdf:parseType="Literal">

<sripas:node_X>
<sc:name>

<sripas:node_Y/>
</sc:name>

</sripas:node_X>
</align:entity1>
<align:entity2 rdf:parseType="Literal">
<sripas:node_X>
<co:prop1>

<sripas:node_FY/>
</co:prop1>

</sripas:node_X>
</align:entity2>
<sripas:transformation rdf:parseType="Literal">
<sripas:function sripas:about="STR">
<sripas:param sripas:order="1"

sripas:about="&sripas;node_Y"/>
<sripas:return sripas:about="&sripas;node_FY

"/>
</sripas:function>

</sripas:transformation>
</align:Cell>

Listing 6. IPSM-AF – function example

IV. IPSM-AF TECHNICAL DETAILS

Bringing entity patterns as close to a regular RDF as
possible, as well as using SPARQL functions in transfor-
mations, allowed us to leverage preexisting knowledge and
experience with those technologies to create a format that
is relatively familiar. Its structure exposes the primary use
case, which is the semantic translation in INTER-IoT. As
stated in the Introduction, we assume that at least two IoT
artifacts (platforms, devices, services, etc.) are communicating
with messages that can be syntactically transformed to and
from RDF. The semantics of messages (i.e. ontologies used
to describe entities) are different, therefore they need to be
translated for every receiver.

Observe that, in the strictly technical sense, the semantic
translation requires rewriting (i.e. replacing) subgraphs in the
RDF messages, and IPSM-AF describes exactly how to do
that. Each alignment cell is applied to the RDF graph and
if it contains (i.e. matches) the <entity1> RDF pattern,
along with any <filters>, then it is replaced with the RDF
subgraph described by <entity2> RDF pattern, after appli-
cation of <transformation>s and <typings>. In IPSM,
cells are applied to the source message, in the order specified
by the <sripas:steps> property. It allows declaration of
an arbitrary ordering of application of alignment cells, where
a given cell may even be used multiple times. This may be
useful in rare cases where application of a specific cell depends

on another cell being a match or not (an “if-type” situation in
the alignment process).

This RDF rewriting itself is done by SPARQL UPDATE
queries, to which the format is compiled by the IPSM soft-
ware. The compiled queries use BIND statements to bind
sripas variables, and apply any SPARQL functions decla-
red in <transformation>. Other than the standard set
of SPARQL 1.1 functions10, custom user functions may be
defined as extensions, or IPSM function libraries (powered by
Apache Jena11). For more details about IPSM, see [11].

Working so close to the RDF brings forward important
differences in interpretation of the content of alignments
between the IPSM-AF format and others. Interpretation of
RDF graph rewriting is very simple – we define, which graph
is the “input”, and which one is the “output”. The rest of
the alignment defines how to get from one to the other. This
is different from, for example, the Alignment API or the
EDOAL, where one can declare alignment between classes in
a single alignment cell. The interpretation, in terms of RDF,
is not officially defined, but we can imagine that, in case of
100% confident class equivalence, any RDF triple that uses
source class URI could use target class URI instead, without
change in semantics. In the IPSM-AF three cells are needed
to achieve the same result – one for each: subject, predicate
and object of RDF triples.

V. CONCLUDING REMARKS

In this work we have discussed in detail a new (the IPSM-
AF) format for expressing alignments of RDF graphs, as well
as any entities in any language expressible in RDF. Discussed
approach is applicable, in particular, to any profile of OWL
2.0. The format is capable of storing very simple, as well
as very complex alignments, and is compatible with existing
technologies (i.e. Alignment API).

The proposed format is the result of work in the INTER-
IoT project, where it is used in the process of semantic
translation of messages exchanged between IoT artifacts. In
this context, note that a concrete application of IPSM-AF and
software to translation of geospacial data has been described
in [3]. Furthermore, for more details about the IPSM we invite
readers to see [12], [11], [12], [13], [14], [15], [16].

Given its practical usage in INTER-IoT we plan to develop
CASE tools that would support users in creating alignments
in our format, in order to remedy its complexity and enable
its full potential. We will report our progress in subsequent
publications.

VI. APPENDIX

In this paper we used the following RDF prefixes:
owl: <http://www.w3.org/2002/07/owl#> .
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
xsd: <http://www.w3.org/2001/XMLSchema#> .
sripas: <http://www.inter-iot.eu/sripas#> .

10https://en.wikibooks.org/wiki/SPARQL/Expressions_and_Functions#Fun
ctions

11https://jena.apache.org/documentation/query/extension.html

https://en.wikibooks.org/wiki/SPARQL/Expressions_and_Functions#Functions
https://en.wikibooks.org/wiki/SPARQL/Expressions_and_Functions#Functions
https://jena.apache.org/documentation/query/extension.html

exmo: <http://exmo.inrialpes.fr/align/ext/1.0/#> .
dc: <http://purl.org/dc/terms/> .
dcelem: <http://purl.org/dc/elements/1.1/> .
sc: <http://schema.org/>
co: <http://inter-iot.eu/central> .
align: <http://knowledgeweb.semanticweb.org/

heterogeneity/alignment#> .

Listing 7. Prefixes used

ACKNOWLEDGMENT

This research was partially supported by the Euro-
pean Union’s “Horizon 2020” research and innovation pro-
gramme as part of the “Interoperability of Heterogeneous
IoT Platforms” (INTER-IoT) project under Grant Agreement
No. 687283.

REFERENCES

[1] D. Fensel, Ontologies: Silver Bullet for Knowledge Management and
Electronic Commerce. Berlin: Springer-Verlag, 2000.

[2] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, K. Wasielewska,
and G. Fortino, “Tools for ontology matching—practical considerations
from INTER-IoT perspective,” in Proc. of the 8th Int. Conference on
Internet and Distributed Computing Systems, ser. LNCS, vol. 9864.
Springer, 2016, pp. 296–307.

[3] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and K. Wasielew-
ska, “Alignment-based semantic translation of geospatial data,” in 3rd
International Conference on Advances in Computing, Communication
& Automation (ICACCA), Proceedings, in press.

[4] “INTER-IoT Project,” http://www.inter-iot-project.eu.
[5] J. Euzenat, “An api for ontology alignment,” in International Semantic

Web Conference, vol. 3298. Springer, 2004, pp. 698–712.
[6] “EDOAL: Expressive and declarative ontology alignment language,” ht

tp://alignapi.gforge.inria.fr/edoal.html.
[7] J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos Santos, “The

Alignment API 4.0,” Semantic Web, vol. 2, no. 1, pp. 3–10, January
2011.

[8] D. Ritze, C. Meilicke, O. Šváb-Zamazal, and H. Stuckenschmidt,
“A pattern-based ontology matching approach for detecting complex
correspondences,” in Proceedings of the 4th International Conference
on Ontology Matching-Volume 551. CEUR-WS. org, 2009, pp. 25–36.

[9] F. Scharffe, J. Euzenat, Y. Ding, and D. Fensel, “Correspondence pat-
terns for ontology mediation,” in Proceedings of the Ontology Matching
Workshop at ISWC, 2007.

[10] M. Pietranik and N. T. Nguyen, “A multi-attribute based framework
for ontology aligning,” Neurocomputing, vol. 146, no. C, pp. 276–290,
2014.

[11] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and K. Wasielew-
ska, “Streaming semantic translations,” in 21st International Conference
on System Theory, Control and Computing ICSTCC, Proceedings, in
press.

[12] ——, “Semantic interoperability in the Internet of Things: an overview
from the INTER-IoT perspective,” Journal of Network and Computer
Applications, vol. 81, pp. 111–124, March 2017.

[13] ——, “Semantic technologies for the IoT – an Inter-IoT perspective,” in
2016 IEEE First International Conference on Internet-of-Things Design
and Implementation (IoTDI). Berlin, Germany: IEEE, April 2016, pp.
271–276.

[14] ——, “Towards semantic interoperability between Internet of Things
platforms,” in Integration, Interconnection, and Interoperability of IoT
Systems, R. Gravina, C. E. Palau, M. Manso, A. Liotta, and G. Fortino,
Eds. Springer, 2017, pp. 103–127.

[15] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, K. Wasielewska,
and C. E. Palau, “From implicit semantics towards ontologies—practical
considerations from the INTER-IoT perspective (submitted for publi-
cation),” in Proc. of 1st edition of Globe-IoT 2017: Towards Global
Interoperability among IoT Systems, 2017.

[16] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and K. Wasie-
lewska, “Towards common vocabulary for IoT ecosystems—preliminary
considerations,” in Intelligent Information and Database Systems, 9th
Asian Conference, ACIIDS 2017, Kanazawa, Japan, April 3-5, 2017,
Proceedings, Part I, ser. LNCS, vol. 10191. Springer, 2017, pp. 35–
45.

http://www.inter-iot-project.eu
http://alignapi.gforge.inria.fr/edoal.html
http://alignapi.gforge.inria.fr/edoal.html

